Как отремонтировать фонарь на светодиодах? Схема китайского фонарика с зарядкой от сети. Несколько простых схем питания светодиодов Зарядка фонарика от сети своими руками



Сегодня мы поговорим о том, как самостоятельно починить светодиодный китайский карманный фонарик. Также рассмотрим инструкции по ремонту светодиодных фонарей своими руками с наглядными фото и видео

Как видно, схема простая. Основные элементы: токоограничивающий конденсатор, выпрямительный диодный мост на четырех диодах, аккумулятор, выключатель, сверхяркие светодиоды, светодиод индикации зарядки аккумулятора фонарика.

Ну а теперь по порядку о назначении всех элементов в фонарике.

Токоограничивающий конденсатор. Он предназначен для ограничения тока заряда аккумулятора. Его емкость для каждого типа фонарика может быть разной. Применяется неполярный слюдяной конденсатор. Рабочее напряжение должно быть не меньше 250 вольт. В схеме он должен обязательно шунтирован, как показано, резистором. Он служит для разряда конденсатора после того, как вы вытащите фонарик с зарядки из розетки. В противном случае вас может ударить током, если вы случайно прикоснетесь к сетевым выводам 220 вольт фонарика. Сопротивление этого резистора должно составлять не менее 500 кОм.

Выпрямительный мост собирается на кремниевых диодах с обратным напряжением не менее 300 вольт.

Для индикации зарядки аккумулятора фонарика применяется простой светодиод красного или зеленого свечения. Он подключен параллельно одному из диодов выпрямительного моста. Правда в схеме я забыл указать указать резистор, включенный последовательно с этим светодиодом.

Про остальные элементы говорить не имеет смысла, так все и так должно быть понятно.

Хочется обратить ваше внимание на основных моментах ремонта светодиодного фонарика. Рассмотрим основные неисправности и способы их устранения.

1. Фонарик перестал светить. Здесь вариантов не так уж и много. Причиной может служить выход из строя сверхярких светодиодов. Это может произойти к примеру в следующем случае. Вы поставили фонарик на зарядку и нечаянно включили выключатель. В этом случае произойдет резкий скачок тока и один или несколько диодов выпрямительного моста могут быть пробиты. А за ними может быть и конденсатор не выдержит и замкнет. Напряжение на аккумуляторе резко возрастет и светодиоды выйдут из строя. Так что ни в коем случае не включайте при зарядке фонарик, если не хотите его выбросить.

2. Фонарик не включается. Ну здесь нужно проверить выключатель.

3. Фонарик очень быстро разряжается. Если ваш фонарик со “стажем”, то скорее всего аккумулятор отработал свой срок службы. Если вы активно пользуетесь фонарем, то после одного года эксплуатации аккумулятор уже не держит.

Проблема 1. Не включается светодиодный фонарик или мерцает при работе

Как правило, это причина плохого контакта. Самый простой способ лечения - плотно закрутить все резьбы.
Если фонарь не работает совсем, начните с проверки аккумулятора. Возможно он разряжен или вышел из строя.

Открутите задняя крышку фонаря и с помощью отвертки замкните корпус с минусовой контакт батареи. Если фонарик загорелся, значит проблема в модуле с кнопкой.

90% Кнопок всех светодиодных фонарей выполнены по одной схеме:
Корпус кнопки из алюминия с резьбой, туда вставляется колпачок из резины, далее сам модуль кнопку и прижимное кольцо для контакта с корпусом.

Проблема чаще всего решается в слабо зажатом прижимном кольце.
Для устранения этой неисправности достаточно найти круглогубцы с тонкими жалами или тонкие ножницы которые нужно вставить в отверстия, как на фото, и провернуть по часовой стрелке.

Если кольцо двигается, то проблема устранена. Если кольцо стоит на месте, значит проблема кроится в контакте модуля кнопки с корпусом. Выкрутите прижимное кольцо против часовой стрелки и вытащите модуль кнопки наружу.
ЧАсто плохой контакт бывает из за окисления алюминиевой поверхности кольца или каемки на печатной плате Указаны стрелками)

Достаточно просто протереть эти поверхности спиртом и функционал будет восстановлен.

Модули кнопок бывают разные. Одни у которых контакт идет через печатную плату, другие, у которых контакт идет через боковые лепестки на корпус фонаря.
Просто отогните такой лепесток вбок, чтобы контакт был плотнее.
Как вариант, можно сделать напайку из олова, чтобы поверхность была толще, и прижимался контакт лучше.
Все светодиодные фонари, в принципе устроены одинаково

Плюс идет через плюсовой контакт батареи в центр светодиодного модуля.
Минус идет через корпус и замыкается кнопкой.

Не лишним будет проверить плотность прилегания модуля светодиода внутри корпуса. Это так же частая проблема светодиодных фонарей.

Круглогубцами или щипцапи прокрутите модуль по часовой стрелке до упора. Будьте аккуратны, в этот момент легко повредить светодиод.
Этих действий должно быть вполне достаточно, чтобы восстановить функционал фонаря светодиодного.

Хуже, когда фонарь работает и режимы переключаются, но пучок очень тусклы, или фонарь вообще не работает и внутри запах гари.

Проблема 2. Фонарь работает нормально, но тускло, или не работает совсем и внутри запах гари

Скорее всего вышел из строя драйвер.
Драйвер - это электронная схема на транзисторах, которая управляет режимами фонаря а так же отвечает за постоянный уровень напряжения вне зависимости от разрядки аккумулятора.

Вам нужно выпаять сгоревший драйвер и впаять новый драйвер, либо соединить светодиод напрямую с аккумулятором. В этом случае вы теряете все режимы и остаетесь только с максимальным.

Иногда (гораздо реже) выходит из строя светодиод.
Проверить это можно очень просто. поднести к контактным площадкам светодиода напряжение 4.2 V/. Главное не перепутать полярность. Если светодиод горит ярко, то вышел из строя драйвер, если наоборот, то нужно заказывать новый светодиод.

Выкрутите модуль со светодиодом из корпуса.
Модули бывают разные, но как правило, они сделаны из меди или латуни и

Самое слабое место у подобных фонарей — кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.
Первый признак — фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.

Самый простой способ заставить такой фонарь светить — поступить следующим образом:

1. Берём тонкий многожильный провод, отрезаем одну жилку.
2. Накручиваем проводок на пружину.
3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать
над закручивающейся частью фонарика.
4. Плотно закручиваем. Излишек провода обламываем (отрываем).
В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик
засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому
включение — выключение фонарика производится поворотом головной части.
Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря
трогать не следует. Отворачиваем голову.

ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.

Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, который
просто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:

1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.
2. Теперь можно пинцетом выкрутить корпус с кнопкой.
3. Извлекаем кнопку.
4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.
На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).
Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.

1. Зачищаем мелкой шкуркой.
2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,
собираем кнопку.
3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.
4. Собираем всё обратно.
После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово — довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будет
легко разрушаться. Недаром же на лампочках центральный контакт делают из олова.

УЛУЧШАЕМ ФОКУСИРОВКУ.

Что такое «хотспот», мой китаец представлял весьма смутно, поэтому я решил его просветить.
Откручиваем головную часть.

1. В плате есть небольшое отверстие (стрелка). С помощью шила выкручиваем начинку,
при этом слегка давим пальцем на стекло снаружи. Так выкручивается легче.
2. Снимаем отражатель.
3. Берём обыкновенную офисную бумагу, пробиваем офисным дыроколом 6-8 отверстий.
Диаметр отверстий дырокола замечательно совпадает с диаметром светодиода.
Вырезаем 6-8 бумажных шайбочек.
4. Кладём шайбы на светодиод и прижимаем отражателем.
Тут придётся поэкспериментировать с количеством шайб. Я таким способом улучшал фокусировку у пары фонариков, количество шайб было в диапазоне 4-6. На текущем пациенте их потребовалось 6.

УВЕЛИЧИВАЕМ ЯРКОСТЬ (для тех, кто немного разбирается в электронике).

Китайцы экономят на всём. Пара лишних деталек — увеличение себестоимости, поэтому не ставят.

Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:
дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным — экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.

1. Так выглядит светодиод в подобных китайцах. Сбоку видно, что внутри толстая и тонкая ножки. Тонкая ножка — это плюс. Ориентироваться нужно по этому признаку, потому что цвета проводов могут быть совершенно непредсказуемыми.
2. Так выглядит плата, к которой припаян светодиод (с обратной стороны). Зелёным цветом обозначена фольга. Провода, идущие от драйвера, припаивают к ножкам светодиода.
3. Острым ножом или треугольным надфилем разрезаем фольгу на плюсовой стороне светодиода.
Всю плату зашкуриваем, для снятия лака.
4. Припаиваем диоды и конденсатор. Диоды я взял из сломанного компьютерного блока питания, танталовый конденсатор выпаял из какого-то сгоревшего винчестера.
Плюсовой провод теперь нужно припаивать к площадке с диодами.

В результате, фонарик выдаёт (на глаз) 10-12 люмен (см. фото с хотспотами),
если судить по фениксу, который в минимальном режиме выдаёт 9 люмен.

Привет! Сегодня посмотрим как провести ремонт китайского фонарика на светодиодах дома своими руками. Затратим при этом минимум средств семейного бюджета. А Вы знали, что первый электрический фонарик был совсем не китайский. Изобрел его в 1896 году американец Дэвид Майзелл. Он запатентовал электрический фонарь, корпус которого был выполнен из дерева с ручкой для ношения. К этому времени уже была изобретена цинковая батарейка и лампа накаливания, так что фонарь был вопросом времени. Сегодня популярный китайский фонарик на светодиодах PM-0107 можно купить буквально за пару сотен рублей. Это уже будет фонарик со встроенной зарядкой от сети 220 вольт. Сегодня посмотрим как починить частые поломки такого китайского фонарика дома своими руками. Предыстория от Мастера Сергея такая: хозяин фонарика включил его на зарядку и случайно задел выключатель фонаря.

Неисправность фонарика

Фонарик вспыхнул и погас . При этом удалось выломать часть вилки для зарядки его от сети. Ну что ж, посмотрим как починить такое чудо китайской промышленности. Разбирается такой очень легко – нужно открутить три самореза и раздвинуть две половины пластикового корпуса фонаря.

Внутри видим аккумуляторную батарею, плату семью светодиодами и отражателем. Есть переключатель режима работы фонаря и плату зарядки аккумулятора с подсоединенной вилкой для сети 220 вольт. Чтобы удобнее было ремонтировать наш простейший разбираем его основательно, вытащив все элементы на стол.

Особое внимание нужно уделить плате зарядки от сети – проверить состояние выпрямительных диодов, индикаторного зеленого светодиода и высоковольтного конденсатора. Не помешает проверить работу кнопки переключения режимов фонаря.

Основательно проверяем светодиоды на круглой плате.

Четыре светодиода оказались сгоревшие

Припаиваем провода на место и проверяем в сборе схему питания .


Делаем фонарик на светодиодах своими руками

Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5 V LED FlashLight

Обычно, для работы синего или белого светодиода требуется 3 - 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with 3 - 3.5 V, like from a 3 V lithium coin cell.

Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка




Параметры используемого трансформатора:
Обмотка, идущая на светодиод, имеет ~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет ~30 витков провода 0.1мм.
Базовый резистор в этом случае имеет сопротивление около 2К.
Вместо R1 желательно поставить подстроечный резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его сопротивление, заменив потом его постоянным резистором полученного номинала.

Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков <15.



Куски проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца разных проводов.
Схему можно расположить внутри подходящего корпуса.
Внедрение такой схемы в фонарь, работающий от 3V существенно продлевает, продолжительность его работы от одного комплекта батареек.











Вариант исполнения фонаря от одной батарейки 1,5в.





Транзистор и сопротивление помещаются внутрь ферритового кольца



Белый светодиод работает от севшей батарейки ААА


Вариант модернизации «фонарик – ручка»


Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек.
Важный момент : мотать катушки нужно в разные стороны.

Фотографии фонарика:
выключатель находится в кнопке «авторучки», а серый металлический цилиндр проводит ток.










По типоразмеру батарейки делаем цилиндр.



Его можно изготовить из бумаги, или использовать отрезок любой жесткой трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали.
Кольцо из феррита не влезло бы в фонарь, поэтому использовался цилиндр из аналогичного материала.



Цилиндр из катушки индуктивности от старого телевизора.
Первая катушка - около 60 витков.
Потом вторая, мотается в обратную сторону опять 60 или около того. Витки скрепляются клеем.

Собираем преобразователь:




Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Получилось следующее:


Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « - », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Теперь следует изготовить «ламподиод».


Внимание: на цоколе должен быть минус светодиода.

Сборка:

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль).

Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.


Современный фонарик c режимом эксплуатации светодиода питанием постоянным стабилизированным током.


Схема стабилизатора тока работает следующим образом:
При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4V, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 и Т2 закроются, Т3 -- откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях :
Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3А и напряжение более 30 В.
Диод D1 должен быть обязательно с барьером Шоттки на ток более 1А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%.
Катушка индуктивности самодельная, мотают ее проводом не тоньше 0,6 мм, лучше - жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания, а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.
Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5.
При необходимости ток может быть увеличен до 1А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.
Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.



Светодиодный фонарь из калькулятора Б3-30

В основу преобразователя взята схема калькулятора Б3-30, в импульсном источнике питания которого используется трансформатор толщиной всего 5 мм, имеющий две обмотки. Использование импульсного трансформатора от старого калькулятора позволило создать экономичный светодиодный фонарь.

В результате получилась очень простая схема.


Преобразователь напряжения выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе VT1 и трансформаторе Т1. Импульсное напряжение с обмотки 1-2 (по принципиальной схеме калькулятора Б3-30) выпрямляется диодом VD1 и подается на сверхъяркий светодиод HL1. Конденсатор С3 фильтр. За основу конструкции взят фонарь китайского производства рассчитанного на установку двух элементов питания типа АА. Преобразователь монтируется на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5 мм рис.2 размерами, заменяющими один элемент питания и вставляемой в фонарь вместо него. К торцу платы обозначенной знаком «+» припаивается контакт, изготовленный из двухсторонне фольгированного стеклотекстолита диаметром 15мм, обе стороны соединяются перемычкой и облуживаются припоем.
После установки на плату всех деталей торцевой контакт «+» и трансформатор Т1 заливаются термоклеем для увеличения прочности. Вариант компоновки фонаря показан на рис.3 и в конкретном случае зависит от типа используемого фонаря. В моем случае никакой доработки фонаря не потребовалось, отражатель имеет контактное кольцо, к которому подпаивается минусовой вывод печатной платы, а сама плата крепится к отражателю с помощью термоклея. Печатная плата в сборе с отражателем вставляется вместо одного элемента питания и зажимается крышкой.

В преобразователе напряжения использованы малогабаритные детали. Резисторы типа МЛТ-0,125, конденсаторы С1 и С3 импортные, высотой до 5 мм. Диод VD1 типа 1N5817 с барьером Шотки, при его отсутствии можно использовать любой выпрямительный диод, подходящий по параметрам, желательно германиевый ввиду более малого падения напряжения на нем. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами. При отсутствии вышеуказанного трансформатора его можно изготовить самостоятельно. Намотка производится на ферритовое кольцо типоразмера К10*6*3 магнитной проницаемостью 1000-2000. Обе обмотки наматываются проводом ПЭВ2 диаметром от 0,31 до 0,44 мм. Первичная обмотка имеет 6 витков, вторичная 10 витков. После установки такого трансформатора на плату и проверки работоспособности его следует закрепить на ней с помощью термоклея.
Испытания фонаря с элементом питания типа АА представлены в таблице 1.
При испытании использовалась самая дешевая батарейка типа АА стоимостью всего 3 р. Начальное напряжение под нагрузкой составило 1,28 В. На выходе преобразователя напряжение, измеренное на сверхярком светодиоде 2,83 В. Марка светодиода неизвестна, диаметр 10 мм. Общий потребляемый ток 14 mА. Суммарное время работы фонаря составило 20 часов непрерывной работы.
При снижении напряжения на элементе питания ниже 1V яркость заметно падает.
Время, ч V батареи, В V преобр., В
0 1,28 2,83
2 1,22 2,83
4 1,21 2,83
6 1,20 2,83
8 1,18 2,83
10 1,18 2.83
12 1,16 2.82
14 1,12 2.81
16 1,11 2.81
18 1,11 2.81
20 1,10 2.80


Самодельный фонарик на светодиодах

Основа - фонарик «VARTA» с питанием от двух батареек типа АА:
Поскольку диоды имеют сильно нелинейную ВАХ необходимо оснастить фонарь схемой для работы на светодиоды, которая обеспечит постоянную яркость свечения по мере разряда батареи и сохранит работоспособность при возможно более низком напряжении питания.
Основа стабилизатора напряжения, это микромощный повышающий DC/DC конвертор MAX756.
По заявленным характеристикам он работает при снижении входного напряжения до 0.7В.

Схема включения - типовая:



Монтаж выполнен навесным способом.
Электролитические конденсаторы - танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки - SM5818. Дроссели пришлось соединить два в параллель, т.к. не оказалось подходящего номинала. Конденсатор С2 - К10-17б. Светодиоды - сверхяркие белые L-53PWC «Kingbright».
Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.

Выходное напряжение стабилизатора в данной схеме включения равно 3.3V. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1V, то лишние 200мV пришлось гасить на резисторе, включенном последовательно с выходом.
Кроме этого, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось - различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции.

Потрошится родная лампочка, и во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу. Плюсовые выводы (по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. «Ламподиод», вставляется на место обычной лампочки накаливания.

Тестирование:
Стабилизация выходного напряжения (3.3V) продолжалась вплоть до снижения напряжения питания до ~1.2V. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5V! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА.

Немного о КПД.
КПД схемы около 63% при свежих батарейках. Дело в том, что миниатюрные дроссели, использованные в схеме, имеют чрезвычайно высокое омическое сопротивление - около 1.5ом
Решение кольцо из µ-пермаллоя с проницаемостью порядка 50.
40 витков провода ПЭВ-0.25, в один слой - получилось около 80мкГ. Активное сопротивление около 0.2 Ом, а ток насыщения по расчетам - более 3А. Выходной и входной электролит меняем на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ.


Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device - ADP1110.



Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно спецификации фирмы-производителя, выпускается в 8 вариантах:

Модель Выходное напряжение
ADP1110AN Регулируемое
ADP1110AR Регулируемое
ADP1110AN-3.3 3.3 V
ADP1110AR-3.3 3.3 V
ADP1110AN-5 5 V
ADP1110AR-5 5 V
ADP1110AN-12 12 V
ADP1110AR-12 12 V

Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет - представляю вашему вниманию еще одну схему:



В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта для питания светодиодов.
Схему можно улучшить, приняв во внимание, что для работы светодиодам нужен источник тока, а не напряжения. Изменения в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.




резистор R1 служит для измерения тока. Преобразователь так устроен, что когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 = 0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и автоматически выбрать необходимое напряжение. К сожалению, на этом сопротивлении будет падать напряжение, что приведет к снижению КПД, однако, практика показала, что оно меньше чем превышение, которое мы выбрали в первом случаи. Я измерял выходное напряжение, и оно составило 3.4 - 3.6В. Параметры диодов в таком включении также должны быть по возможности одинаковыми, иначе суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим разную светимость.

Детали

1. Дроссель подойдет любой от 20 до 100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47 мкГн. Его можно сделать самому - намотать около 40 витков провода ПЭВ-0.25 на кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и 2,2 ком.
5. Светодиоды. L-53PWC - 4 штуки.



Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.


Ток, потребляемый от батареи напряжением 2,41V, - 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.

Первичную и вторичную обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит - 2x41 витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит - 2x44 витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют в соответствии со схемой.

Транзисторы КТ529А структуры p-n-p можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе, используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы скрепляют между собой хомутом из тонкой латуни, который обеспечивает необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают взамен лампы накаливания так, чтобы он выступал на 0,5... 1 мм из гнезда для её установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от батареи подают через резистор сопротивлением 18...24 Ом чтобы не вывести из строя транзисторы при неправильном подключении выводов трансформатора Т1. Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют исправность всех элементов и правильность монтажа.


Преобразователь напряжения для питания светодиодного фонаря промышленного образца.




Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 - микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки - практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ

Катушка индуктивности 68 микрогенри на 0.4 А

Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали - с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.

Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.


Фонарик на источнике тока


Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.



Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, и с улучшенным КПД

Т.к. выход операционника имеет тип «открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2, таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т.к. биполярный транзистор имеет сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая 0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми, в которых сопротивление сток исток гораздо меньше, это даст возможность уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.

Дроссель. Дроссель нужно брать с минимальным сопротивлением, особое внимание следует уделить максимальному допустимому току он должен быть порядка 400 -1000 мА.
Номинал не играет такой роли как максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и 180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем. Однако на практике это не совсем так, т.к. мы имеем не идеальную катушку, она имеет активное сопротивление и не линейна, кроме того, ключевой транзистор при низких напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек разного типа, конструкции и разного номинала, что бы выбрать катушку, при которой самый высокий КПД, и самое маленькое минимальное входное напряжение, т.е. катушку, с которой фонарик будет светиться максимально долго.

Конденсаторы.
C1 может быть любым. С2 лучше взять танталовым т.к. у него маленькое сопротивление это повышает КПД.

Диод Шотки.
Любой на ток до 1А, желательно с минимальным сопротивлением и минимальным падением напряжения.

Транзисторы.
Любые с током коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318 подойдет.

Светодиоды.
Можно белые NSPW500BS со свечением в 8000мКд от Power Light Systems .

Преобразователь напряжения
ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить, взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.


Фонарь на ADP3000-ADJ

Параметры:
Питание 2.8 - 10 В, КПД ок. 75%, два режима яркости - полный и половина.
Ток через диоды 27 мА, в режиме половинной яркости - 13 мА.
В схеме для получения высокого КПД желательно использовать чип-компоненты.
Правильно собранная схема в настройке не нуждается.
Недостатком схемы является высокое (1,25V) напряжение на входе FB (вывод 8).
В настоящее время выпускаются DC/DC конвертеры с напряжением FB около 0,3V, в частности, фирмы Maxim, на которых реально достичь КПД выше 85%.


Схема фонаря на Кр1446ПН1.




Резисторы R1 и R2 - датчик тока. Операционный усилитель U2B - усиливает напряжение, снимаемое с датчика тока. Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать другие значения тока стабилизации.
В принципе операционный усилитель можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6 Вольта - 36 мВт. В случае применения операционного усилителя потери составят:
на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт + потребление самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
= 1.88 мВт - существенно меньше, чем 36 мВт.

О компонентах.

На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше - типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.

КПД получившегося устройства.
Входные U I P Выходные U I P КПД
Вольт мА мВт Вольт мА мВт %
3.03 90 273 3.53 62 219 80
1.78 180 320 3.53 62 219 68
1.28 290 371 3.53 62 219 59

Замена лампочки фонарика “Жучёк” на модуль фирмы Luxeon Lumiled LXHL - NW 98.
Получаем ослепительно яркий фонарик, с очень легким жимом (по сравнению с лампочкой).


Схема переделки и параметры модуля.

Преобразователи StepUP DC-DC конверторы ADP1110 фирма Analog devices.




Питание: 1 или 2 батарейки 1,5в работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 = 300mA
*при замкнутом переключателе S1 = 110mA


Светодиодный электронный фонарь
С питанием всего от одной пальчи­ковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практиче­ски идентичные характеристики.


За основу взят фо­нарь, в котором в качестве источника питания используются две паль­чиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго эле­мента питания. С одного торца платы припаян контакт из луженой же­сти для питания схемы, а с другого - светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть боль­ше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставля­ется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубоч­ки из ПВХ или фторопласта. Назначение кружка - двойное. Он обе­спечивает конструкции необходимую жесткость и одновременно слу­жит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают та­ким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.

В конструкции применены, стандарт­ные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет пи­тать даже светодиоды с яркостью до 25 кд!

О некоторых результатах испытаний данной конструкции.
Доработанный таким образом фонарь проработал со «свежей» ба­тарейкой без перерыва, во включенном состоянии, более 20 часов! Для сравнения - тот же фонарь в «стандартной» комплектации (то есть с лампой и двумя «свежими» батарейками из той же партии) рабо­тал всего 4 часа.
И еще один важный момент. Если применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за состоянием уров­ня их разрядки. Дело в том, что преобразователь на микросхеме КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение светодиодов стабильно яркое, пока напряжение на аккуму­ляторе не достигло этого критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света.

Рис. 9.2 Рис 9.3




Печатная плата устройства приведена на рис. 9.3, а расположение элементов - на рис. 9.4.


Включение и выключение фонаря одной кнопкой


Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме "выкл." ток потребления схемы - практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция- устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т.к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.

CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2

Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет "выжать" из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм - 100-300 витков с отводом от середины, намотанные на тороидальное колечко.




Светодиодный фонарь с регулируемой яркостью и режимом "Маяк"

Питание микросхемы - генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая управляет электронным ключом, в предлагаемом устройстве осуществляется от повышающего преобразователя напряжения, что позволяет питать фонарь от одного гальванического элемента 1,5.
Преобразователь выполнен на транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной обратной связью по току.
Схема генератора с регулируемой скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght белого свечения равен 2.3 мА Зависимость потребляемого тока от числа светодиодов - прямо пропорциональная.
Режим "Маяк", когда светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при установке регулятора яркости на максимум и повторном включении фонаря. Желаемую частоту световых вспышек регулируют подбором конденсатора СЗ.
Работоспособность фонаря сохраняется при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет следующие предельные параметры, напряжение сток-исток - 240 В; напряжение затвор-исток - 20 В. ток стока - 0.18 А; мощность - 0.5 Вт
Допустимо параллельное включение транзисторов желательно из одной партии. Возможная замена - КП504 с любым буквенным индексом. Для полевых транзисторов IRF540 напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть повышено до 10 В
В фонаре с шестью параллельно включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при подключении параллельно VT3 второго транзистора - 140 мА
Трансформатор Т1 намотан на ферритовом кольце 2000НМ К10- 6"4.5. Обмотки намотаны в два провода, причем конец первой обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10 витков, вторичная - 2*20 витков Диаметр провода - 0.37 мм. марка - ПЭВ-2. Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один слой, число витков - 38. Индуктивность дросселя 860 мкГн












Схема преобразователя для светодиода от 0,4 до 3V - работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.






Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).

Building the LED Head Lamp





Что касается трансформатора в конвертере DC-DC. Вы должны его сделать самостоятельно. Изображение показывает, как собрать трансформатор.



Ещё вариант преобразователей для светодиодов _http://belza.cz/ledlight/ledm.htm








Фонарь на свинцово-кислотном герметичном аккумуляторе с зарядным устройством .

Свинцово кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в них находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь их полной разрядки.
Свинцово-кислотные герметичные аккумуляторные батареи подходят для применения в переносных фонарях, используемых в домашнем хозяйстве, на дачных участках, на производстве.


Рис.1. Схема электрического фонаря

Электрическая принципиальная схема фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая простым способом не допустить глубокий разряд аккумулятора и, таким образом, увеличить его срок службы, показана на рисунке. Он содержит заводской или самодельный трансформаторный блок питания и зарядно-коммутационное устройство, смонтированное в корпусе фонаря.
В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А. Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для этой цели.
Переменное напряжение с трансформаторного блока поступает на зарядно-коммутационное устройство, содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1, стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку экстренного включения S2, лампу накаливания HL2. Каждый раз при включении тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1 замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается, пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения реле К1. Изменять допустимое значение напряжения разряда можно с помощью резистора R2. С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не включится, следовательно, не будет подано напряжение на базу транзистора VТ1, включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае экстренной необходимости можно включить фонарь при пониженном напряжении кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного устройства можно подавать и постоянное напряжение, не обращая внимание на полярность стыкуемых устройств.
Для перевода фонаря в режим заряда необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2, расположенной на корпусе фонаря, а затем включить вилку (на рисунке не показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А. Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в стабилизаторе тока, выполняет также функцию индикатора режима заряда аккумулятора.
Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах) обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в ампер-часах).
Для настройки лучше всего собрать схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А. Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64, паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с любым буквенным индексом. Эти транзисторы являются составными и имеют высокий коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1 установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор R1 состоит из двух последовательно соединенных проволочных резисторов мощностью 12 Вт.

Схемы:



РЕМОНТ СВЕТОДИОДНОГО ФОНАРИКА

Номиналы деталей (С, D, R)
C = 1 мкФ. R1 = 470 кОм. R2 = 22 кОм.
1Д, 2Д - КД105А (допустимое напряжение 400V предельный ток 300 mA.)
Обеспечивает:
зарядный ток = 65 - 70mA.
напряжение = 3,6V.











LED-Treiber PR4401 SOT23






Здесь можно посмотреть к чему привёли результаты эксперимента.

Предложенная Вашему вниманию схема, была использована для питания светодиодного фонарика, подзарядки мобильного телефона от двух металлгидритных аккумуляторов, при создании микроконтроллерного устройства, радиомикрофона. В каждом случае работа схемы была безупречной. Список, где можно использовать MAX1674 можно ещё долго продолжать.


Самый простой способ получить более-менее стабильный ток через светодиод - включить его в цепь нестабилизированного питания через резистор. Надо учитывать, что питающее напряжение должно быть как минимум в два раза больше рабочего напряжения светодиода. Ток через светодиод рассчитывается по формуле:
I led = (Uмакс.пит - U раб. диода) : R1

Эта схема чрезвычайно проста и во многих случаях является оправданной, но применять ее следует там, где нет нужды экономить электричество, и нет высоких требований к надежности.
Более стабильные схемы, - на основе линейных стабилизаторов:


В качестве стабилизаторов лучше выбирать регулируемые, или на фиксированное напряжение, но оно должно быть как можно ближе к напряжению на светодиоде или цепочке последовательно соединенных светодиодов.
Очень хорошо подходят стабилизаторы типа LM 317.
ный немецкий текст: iel war es, mit nur einer NiCd-Zelle (AAA, 250mAh) eine der neuen ultrahellen LEDs mit 5600mCd zu betreiben. Diese LEDs benötigen 3,6V/20mA. Ich habe Ihre Schaltung zunächst unverändert übernommen, als Induktivität hatte ich allerdings nur eine mit 1,4mH zur Hand. Die Schaltung lief auf Anhieb! Allerdings ließ die Leuchtstärke doch noch zu wünschen übrig. Mehr zufällig stellte ich fest, dass die LED extrem heller wurde, wenn ich ein Spannungsmessgerät parallel zur LED schaltete!??? Tatsächlich waren es nur die Messschnüre, bzw. deren Kapazität, die den Effekt bewirkten. Mit einem Oszilloskop konnte ich dann feststellen, dass in dem Moment die Frequenz stark anstieg. Hm, also habe ich den 100nF-Kondensator gegen einen 4,7nF Typ ausgetauscht und schon war die Helligkeit wie gewünscht. Anschließend habe ich dann nur noch durch Ausprobieren die beste Spule aus meiner Sammlung gesucht... Das beste Ergebnis hatte ich mit einem alten Sperrkreis für den 19KHz Pilotton (UKW), aus dem ich die Kreiskapazität entfernt habe. Und hier ist sie nun, die Mini-Taschenlampe:

Источники:
http://pro-radio.ru/
http://radiokot.ru/

Добрый день всем читателям и почитателям сайта Радиосхемы! Сегодня хочу вас ознакомить с очередной переделкой китайского фонаря.

Как-то раз достался мне пластиковый корпус внушительных размеров от какого-то китайского фонарика неизвестной фирмы, совершенно бесплатно. Решил, что пригодится - что-нибудь сделаю. Разобрав, обнаружил внутри совершенно дохлый аккумулятор неизвестного производителя, на нём нет ни одной надписи. Светоизлучающие элементы так же отсутствовали. Ну и отложил его до лучших времён.

Замена аккумулятора

Впоследствии был куплен аналогичный по размерам аккумулятор на 6 вольт 4,5 А/ч. Правда размер его был чуточку больше, поэтому пришлось корпус, что называется «доработать напильником».

В верхней части фонаря, очевидно, была какая-то лампа накаливания. Не много пораскинув мозгами и глазами по своим закромам, обнаружил, что в место последней, очень неплохо подходит линза от одноваттного светодиода. Которая, при помощи всё того же напильника, удачно вписалась в сие технологическое отверстие, вместе с тем же светодиодом. И на него же в последствие было приклеено два кусочка алюминиевого профиля от раздвижных мебельных дверей, в качестве радиатора. Изначально хотелось поставить туда трёх ваттный светодиод, но опыт использования таких диодов говорил, что не хватит площади охлаждения у моего импровизированного радиатора (а больший по размеру, не уместился бы внутри фонаря), поэтому решил остановиться на одноваттном диоде.

Запитывать светодиод хотел с помощью . Но тут попалась под руки автомобильная зарядка для телефона, как выяснилась построенная на каком-то китайском аналоге всё той же МС34063, так как схема совпадала один в один. Решил взять эту плату за основу, отпаял USB разъём, заменил делитель напряжения на многооборотный подстроечный резистор. Выставил ток в 270 мА (в то время как диод рассчитан на 350 мА - будет запас). Силы света вполне хватает, чтобы ночью осветить пространство метров на 15-20.

Установка светодиодов

Далее, в нижней части, скорее всего, была какая-то люминесцентная лампа. Что можно определить по характерным выступам на отражателе. Не долго думая, решил установить туда светодиоды, недавно пришедшие с Китая:

Делалось всё очень просто. На бумаге в клеточку разметил расположение светодиодов, приклеил на отражатель бумажным клеем и просверлил миллиметровым сверлом отверстия под выводы. Убрал бумагу, почистил отражатель тряпочкой от клея, вставил светодиоды и загнул ножки. Так как не хотелось лепить драйвер, решил ограничиться резисторами. Светодиоды соединил все параллельно и на каждый светодиод поставил по резистору на 180 Ом, использовал для этого SMD резисторы, которые вплавил прямо в пластик, так как аккумулятор оказался великоват и места для выводных элементов просто не оказалось.

Выключатель питания расположен в верхней части ручки и имеет три фиксированных положения. В среднем положении всё выключено, в крайнем заднем положении включена нижняя часть фонаря, она даёт рассеянный свет. А в крайнем переднем положении включается верхняя часть и даёт узко направленный пучок света, плюс к нему запитывается нижняя часть через припаянный к выключателю диод.

Индикатор напряжения

Потом возникла мысль сделать индикацию заряда аккумулятора. Перелопатил интернет, нашёл такую таблицу:

Так как аккумулятор у меня на 6 вольт числа с графы «напряжение» необходимо разделить на два. Решил собрать индикатор на широко распространённой микросхеме LM324, представляющей из себя счетверённый операционный усилитель (ОУ). Так как похожую схему уже паял для световой индикации металлоискателя, то у меня осталась печатка, которую впоследствии пришлось немного доработать. Для отображения информации о состоянии аккумулятора взял четыре значения (по числу ОУ) - 20%, 40%, 60% и 80%. Полдня пришлось убить только для расчета делителя напряжения, даже специально составил для этого таблицу в Excel, что бы легче было считать.

Кнопку включения индикатора вывел на корпус под ручкой, при нажатии на неё загорается соответствующее заряду число светодиодов. Если горит один то 20%, если все, то 80% и больше.

Power Bank

Следующей функцией моего фонаря стала возможность заряжать мобильные устройства. Так как аккумулятор имеет не плохую ёмкость, он вполне может .

Долго думал над тем, каким образом согласовать уровни напряжений аккумулятора и мобильного телефона. Сначала хотел сделать всё тот же преобразователь на МС34063, но он не подошёл из-за маленькой разницы напряжений, был вариант установить LM7805, но он опять же отпал по той же причине. В итоге, пообщавшись на нашем форуме с друзьями радиолюбителями (за что им огромное спасибо!) пришёл к выводу, что можно использовать обыкновенный резистор, который будет ограничивать ток и путём не сложных манипуляций с законом Ома был произведён рассчёт данного элемента. Получилось 3 Ома 1 Вт.

Индикатор заряда

Далее предполагается модернизация фонаря, путём установки на него солнечной панели на боковую поверхность корпуса, для постоянной подзарядки аккумулятора. Ведь большую часть времени фонарь находится в выключенном состоянии. Получится такая походная, автономная мини электростанция. Для зарядки мобильника и освещения. На этой весёлой ноте разрешите откланяться, до новых встреч на страницах сайта ! Автор - Тёмыч (Артём Богатырь)

Обсудить статью КАК УЛУЧШИТЬ КИТАЙСКИЙ ФОНАРИК

Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.

Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.

Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.

Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.

Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.

Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.

С основными детальками разобрались. Теперь расскажу, что же сломалось.

При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.

Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке - мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.

При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.

Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.

В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.

Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F ), выпустившей данный транзистор.

Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже "отбросил копыта".

Цоколёвка транзистора FDS9435A выглядит следующим образом.

Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (D rain). Выводы 1, 2, 3 также соединены вместе и являются истоком (S ource). 4-ый вывод - это затвор (G ate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).

В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.

Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы - подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.

После замены транзистора FDS9435A налобный фонарь стал работать исправно.

На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.

Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.

При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4...3,8V, которое практически соответствует напряжению на аккумуляторе (3,75...3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.

При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4...3,5V.

В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.

На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между "+" питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.

Картинка ШИМ-сигнала на экране осциллографа (время/деление - 0,5; V/деление - 0,5). Время развёртки - mS (миллисекунды).

Так как на затвор поступает отрицательное напряжение, то "картинка" на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!

Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.

Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.

Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус "-". Импульс перевёрнут.

S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,

    S - скважность (безразмерная величина);

    Τ - период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);

    τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.

Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.

D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.

Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус "-" на затворе за плюс "+". Поэтому и вышло всё наоборот.

В режиме "STROBE" мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.

Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.

Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.

Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.

Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой "0" (перемычка), что, на мой взгляд, вообще является преступлением.

Светодиод - это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.

Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.

Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.

Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4...3,5V, что явно многовато.

Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).

После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.

Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.

Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.

После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.

При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R (ds)on).

Чем выше ток, тем большее напряжение "оседает" по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А - 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67...3,75V, то на стоке MOSFET"а уже 3,55...3,63V.

Ещё 0,5...0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.

На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.